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A semantic investigation of a particular form of Brouwer-Zadeh logic (three- 
valued Brouwer-Zadeh logic) is presented and it is shown that this logic can be 
characterized by means of Kripke-s@e semantics. Some connections of 
Brouwer-Zadeh logics with unsharp quantum mechanics are also investigated. 

1. INTRODUCTION 

Brouwer-Zadeh logics, called also fuzzy-intuitionistic quantum logics, 
represent nonstandard versions of quantum logic. A characteristic of these 
logic~ is a splitting of the connective "no t"  into two forms of negation: a 
fuzzy-like negation that gives rise to a paraconsistent behavior, and an 
intuitionistic-like negation. The fuzzy "no t"  represents a weak negation that 
inverts the truth values truth and falsity, satisfies the double negation 
principle, but generally violates the noncontradiction and the excluded 
middle principles. The second "not"  is a stronger negation, a kind of 
necessitation of the fuzzy "not ."  As shown in Cattaneo and Nistic6 (1989) 
and Cattaneo et al. (1993), Brouwer-Zadeh logics admit of Hilbert-space 
exemplifications in the framework of  the unsharp (or operational) approach 
to quantum mechanics. 

In this paper, we will show that a particular kind of  Brouwer-Zadeh 
logic (three-valued Brouwer-Zadeh logic) can be semantically characterized 
by means of a Kripke semantics. Alternative semantic characterizations can 
be found in Giuntini (1991, 1992). 

2. B R O U W E R - Z A D E H  P O S E T  T H E O R Y  

A Brouwer-Zadeh poset ( B Z  poset) is a bounded poset with two 
nonstandard complements linked by an interconnection rule. The first 
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complement represents a generalization of the usual complement of fuzzy 
set theory, whereas the second one is a generalization of the intuitionistic 
complement. B Z  3 posets are particular BZ posets which satisfy a kind of  
strong de Morgan law for the intuitionistic complement and a particular 
equation connecting the two complements. 

Definition 2.1. An involutive bounded poset (lattice) is a structure 
= {P, -<, • 1, 0) satisfying the following conditions: 

(i) {P, <,  1, 0) is a partially ordered set (poset) (lattice) with maxi- 
mum (1) and minimum (0). 

(ii) • is a 1-ary operation (the fuzzy-like complement) which satisfies 
the following conditions: 

(a) a l •  = a. 

(b) Va, bsP:  i f a - < b ,  t h e n b  •  • 

Two elements a, b of an involutive bounded poset are said to be 
orthogonal (a • b) iff a < b i .  The inf and the sup of two elements a, b, 
when they exist, will be denoted by a n b and a u b, respectively. 

Definition 2.2. A regular involutive bounded poset (lattice) is an invo- 
lutive bounded poser (lattice) ~ = {P, <,  z, 1, 0) satisfying the following 
condition: 

Va, b ~P: if a L a and b • b, then a L b (regularity condition) 

It is easy to see that an involutive bounded lattice ~ is regular iff it 
satisfies the Kleene condition, i.e., Va, beP: a n a I < b u b • 

Definition 2.3. An orthoposet (ortholattice) is an involutive bounded 
poset (lattice) ~ which satisfies the following condition: Va e P: a n a • = 0. 

Definition 2.4. A Brouwer-Zadeh poset (BZ poset) (BZ lattice) is a 
structure ~ = {P, ~ ,  • ~, 1, 0) which satisfies the following conditions: 

(i) ~ = {~ ,  -<, • 0) is a regular involutive bounded poset 
(lattice). 

(ii) ~ is a 1-ary operation (the intuitionistic-like complement) which 
satisfies the following conditions Va, b ~.P: 

(a) a < a - ~  

(b) I f a < - b ,  then b~ < a ~ .  
(c) a n a ~  =0 .  
(iii) a - •  

Lemma 2.1. Let ~ be a BZ poset. The following conditions hold: 
(i) VaeP: a~ <- a • 
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(ii) Va, b e P :  if a m b  exists in P, then a - n b ~  exists in P and 
( a u b ) ~ = a ~ n b ~ .  

Example 2.1. Let L.'=[O, 1] c N and let -< be the natural  order  of  
restricted to [0, 1]. We can define on [0, 1] the following operat ions for all 
asL:  

( i )  a •  1 - a .  

(ii) 

10 if a = 0  
a ~ = otherwise 

The structure @ro,11 '= (L[0.1], -<, • ~, 1, 0)  turns out  to be a BZ lattice, 
where a n b :=min ({a ,  b}) and a m b , = m a x ( { a ,  b}). 

Example 2.2. Let E ( ~ )  be the class o f  all effects of  a Hilbert  space .~. 
An effect is a linear bounded opera tor  E s.t. | < E < 4, where | and ~ are 
the null and the identity operators,  respectively. Let us define the following 
relation and operat ions for all E, F e E ( ~ ) :  

(i) E -< F iff V~p e.~: (E~0, cp) _< (Fop, (p). 
(ii) E-- = ~ - E. 

(iii) E -  = PKer.(E~, where PI<,~.(E) is the projector  associated with the 
closed subspace Kern(E).-= {(p ~SSIE~p = 0}. 

The structure @(SS) = (E(-~, <-, ~, ~, | ~) turns out to be a BZ poset 
which is not  a lattice. 

Lemma 2.2. Let ~' be a BZ poset. Then, the following condit ions are 
equivalent Va ~P:  

(i) a = a - ~ .  
(ii) a - = a • 

(iii) a = a - •  
(iv) a = a L ~ 

Lemma 2.3. Let ~ = (P ,  -<, • ~, 1, O) be a BZ poset. Then  the set 
Pe:={aeP/a = a~  ~} is not  empty, since O, l s P e  and, moreover:  

(i) a - = a - - , V a e P e .  The set Pe endowed with the restriction o f  
the partial order  < defined on P is an or thoposet  with respect to the 
or thocomplementa t ion  ~: P~ ~ Pe" 

(ii) I f  ~ is a lattice, then Pe is closed under  the inf and the sup 
operat ions of  P. 

The elements o f  Pe are called exact elements of  ~ and the elements of  
P/P~ are called fuzzy elements of  ~ .  
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In Giuntini (1992) it is proved that the MacNeille completion of  every 
BZ poser is a complete BZ lattice. Therefore, every BZ poset can be 
embedded into a complete lattice. 

Definition 2.5. Let ~ = {P, <,  • - ,  1, 0)  be a BZ poser. An element 
a ~ P  is said to be a half  element of ~ iff a •  a. 

It is easy to see that if a BZ poset has a half element, then this is 
unique. Such an element will be denoted by 1/2. 

The set of all effects of a Hilbert space is a BZ poset with the half 
element. 

Definition 2.6. A B Z *  poset (lattice) is a BZ poset (lattice) 
= {P, <,  • - ,  1, 0)  which satisfies the following conditions Va, b ~ P :  

(*) I r a  •  

If ~ is a BZ lattice, then condition (*) is equivalent to the following 
(equational) condition: Va, b ~ P :  a n b~ ~ < a • m b. 

If ~ is a BZ* poser, then we have VamP: a • = 0  iff a -< a • 
One can easily show that both the BZ lattice of Example 2.1 and the 

BZ poset of Example 2.2 do not satisfy condition (*). 

Definition 2. 7. A de Morgan B Z  poset is a BZ poset 
= (p ,  _<_, l ,  ~, 1, O) which satisfies the following condition Va, b ~P: 

(DM) If a n b  exists in P, then a ~ m b ~  exists in P and 
( a n b ) ~ = a  ~ u b ~  

As one can readily see, the BZ lattice of  Example 2.1 satisfies condi- 
tion (DM). 

Theorem 2. I. Let ~ be a finite-dimensional Hilbert space. The set of 
all effects of ~ is a de Morgan BZ poset. 

Proof. See Cattaneo and Giuntini (1993). 

It is an open question whether the BZ poset of all effects of an infinite 
dimensional Hilbert space satisfies condition (DM). Moreover, it is not 
known whether every de Morgan BZ lattice can be embedded into a 
complete de Morgan BZ lattice. Further, it is not known whether the de 
Morgan BZ poser of all effects of a finite-dimensional Hilbert space can be 
embedded into a complete de Morgan BZ poser. 

Definition 2.8. A B Z  3 poset ( B Z  3 lattice) is a BZ poset (lattice) 
which satisfies conditions (*) and (DM). 

As proved in Giuntini (1992), conditions (*) and (DM) are indepen- 
dent. 
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3. ORTHO-PAIR SEMANTICS 

The language of  Brouwer-Zadeh logics contains a denumerable set of 
sentential letters Pl ,P2, . . .  ,P . . . . .  and the (primitive) connectives A 
(and), --1 (fuzzy negation), and ~ (intuitionistic negation). We will use 
p, q, r . . . . .  as metavariables ranging over sentential letters and ~, fl, 7 , - . .  
as metavariables for formulas. The disjunctive connective v is defined by 
means of  a metalinguistic definition: 

In the following, we will consider a particular form of Brouwer-Zadeh 
logic, the so-called three-valued Brouwer-Zadeh logic (BZL3). ' Such a logic 
turns out to be properly stronger than weak Brouwer-Zadeh logic (BZL) 
(the logic which is algebraically characterized by the equational class of all 
BZ lattices (Cattaneo et al., 1993)). In this section, we will present a 
semantic characterization of  BZL 3 based on a kind of  many-valued possi- 
ble world semantics (called ortho-pair semantics) first proposed by Catta- 
neo and Nistic6 (1989). The intuitive idea can be sketched as follows: one 
supposes that interpreting a language means associating to any sentence 
two domains of certainty: the domain of possible worlds where the sentence 
certainly holds and the domain of  possible worlds where the sentence 
certainly does not hold. All the other worlds are supposed to associate an 
intermediate truth-value (indetermined) to our sentence. Differently from 
the standard Kripkean behavior, the positive domain of a given sentence 
does not generally determine the negative domain of  the same sentence. As 
a consequence, propositions are here identified with particular pairs of  sets 
of  worlds, rather than with particular sets of  worlds (as happens in the 
usual possible worlds semantics). 

The models of this semantics will be called models with positive and 
negative domains (shortly, ortho-pair models). A Hilbert-space exemplifica- 
tion of  this semantics can be found in Cattaneo et al. (1993). 

Definition 3. l. A preclusivity space is a pair d / =  ( / ,  ~ ), where I is a 
nonempty set and ~ is an irreflexive and symmetric binary relation on L 
A simple proposition of a preclusivity space ~ '  = (L  4~ ) is a subset A of I 
such that A = A "~ ~, where 

A ~,= {i6IIVj~A: i @j} 

Let P(I) be the set all simple propositions. Then, the structure 

~ ( I )  ,--- (P(I ) ,  _ ,  ~, ~5, I )  
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is a complete ortholattice. Let us indicate by *~, (n ) ,  ( u )  the lattice 
operations defined on P(I). (V), (A)  will represent the infinitary lattice 
operations. 

Definition 3.2. A possible proposition of de/is any pair (A1, Ao), where 
A1, A0 are simple propositions such that A1 J- Ao (in other words, A1 and 
A0 are preclusive). 

A possible proposition (A~, A0) is called exact iff A o = A ~ (in other 
words, A o is maximal). 

The following operations and relations are defined on the set T(I) of 
all possible propositions: 

(i) The fuzzy complement: 

(A1, Ao) • = (Ao, A1) 

(ii) The intuitionistic complement: 

(A~,Ao)~ = (Ao, Ao ~)  

(iii) The propositional conjunction: 

(Al, A0) n (B1, Bo) = (AI( n )B1, Ao( u )Bo) 

(iv) The propositional disjunction: 

(AI, Ao) u (B1, Bo) = (AI( u )B1,Ao( n )Bo) 

(v) The infinitary conjunction: 

~ {(A'~,A~)}=I(A) {A'~},(V) {A'~} ) 

(vi) The infinitary disjunction: 

(vii) The order-relation: 

(AI,Ao)E(B~,Bo) iff AI~BI and BoC_A o 
(viii) The absurd proposition: 

0 -- ( ~ ,  I )  

(ix) The trivial proposition: 

1 = ( I ,  ~ ) .  

Then, one can prove the following theorems: 
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Theorem 3.1. The structure J - ( I )  = (T(I) ,  (A) ,  (V) ,  • - ,  (~25, I ) ,  
(L  ~ ) )  is a complete B Z  3 lattice with the half element ( ~ ,  ~ ) .  

Proof. See Cattaneo and Nistic6 (1989). 

Theorem 3.2. Every BZ 3 poser can be embedded into the complete BZ 3 
lattice of all possible propositions of a preclusivity space. 

Proof. See Giuntini (1992). 

By Theorems 3.1 and 3.2 one can conclude that every BZ 3 poset can 
be embedded into a complete BZ 3 lattice. 

Definition 3.3. An ortho-pair model is a system ~ = (L 4f, I-I, v),  
where: 

(i) (L  4f) is a preclusivity space. 
(ii) FI is a subset of all possible propositions of  ( / ,  4f ) which is 

closed under • - ,  u ,  n ,  and 0.-= ( ~ ,  I ) .  
(iii) v is an interpretation-function that maps formulas into II accord- 

ing to the following conditions: 
(a) v(p)~FI, for all sentential letters p. 
(b) v(fi A 7) = V(fi) rq V(y). 
(c) v(-1/~) = v(/~)=. 
(d) v(~f i )  = v(fl) ~. 

Definition 3.4. A formula c~ is valid in an ortho-pair model 
d{ = (I, 4~, FI, v)  (>jec 0 iff v(c 0 = 1 = (L ~ ) .  

A formula c~ is a logical truth of BZL 3 (~BzL3 C~) iff for any ortho-pair 
model de, ~//c~. 

Definition 3.5. Let T be a set of formulas and let dCd = (I, 4#, 17, v) be 
an ortho-pair model. We say that ~ is an w/C-consequence of  T (T  ~# c~) iff 
V(X~, X0)eFl: if VfisT:  (X~, Xo)yV(fl),  then (X1, ~o)  cv(~). 

c~ is a logical consequence of T in the ortho-pair semantics of BZL 3 
(T >~zL3 a)iff for any ortho-pair model J :  T >~/l ~- 

BZL 3 can be axiomatized and a strong completeness theorem (based 
on the ortho-pair semantics) can be proved (Cattaneo et al., 1993). 

One can construct also an algebraic semantics for BZL 3, based on the 
equational class of all BZ 3 lattices (Giuntini, 1992). By Theorem 3.2, one 
can prove that the ortho-pair semantics and the algebraic semantics 
strongly characterize the same logic. 

In Giuntini (1993) we have developed a filtration technique for ortho- 
pair semantics and we have proved that BZL 3 has the finite model 
property; consequently, BZL 3 is decidable. The finite model property for 
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BZL instead is proved by means  o f  filtration techniques based o n  the 
Kripkean  semantics  (Giuntini ,  1992). 

4. K R I P K E A N  S E M A N T I C S  F O R  B Z L  3 

In this section, we will present a Kripkean semantics for BZL 3 and will 
prove a representation theorem for BZ 3 lattices based on the notion of BZ 3 
frame. Finally, we will show that the Kripkean semantics for BZL 3 and the 
ortho-pair semantics strongly characterize the same logic. 

Differently from the usual Kripke frames, a BZ 3 frame contains two 
accessibility relations(J_ and &) and two unary operations ([] and *). The 
accessibility relation ~ (which determines the fuzzy-like complement) is 
stronger that the accessibility relation & (which determines the intuitionis- 
tic-like complement). Moreover, the two accessibility relations are con- 
nected by means of the two unary operations. For any world i there exists 
a "twin-world" j which represents the "possibility-world" associated with i. 
"Twin" means here that the two worlds i and j cannot be distinguished by 
means of the weak accesibility relation 4~. The unary operation [] can be 
interpreted as that function which "extracts" from any world i, its "neces- 
sity-region." The operation * can be intuitively interpreted as a function 
which extracts the " l -contradic tory  region" of the world i itself. 

Definition 4.1. A BZ 3 frame is a system ~- = <W, L, 4., [], *, 2}, 
where W is a nonempty set (the set of possible worlds) and 2 (the absurd 
worM) is an element not belonging to W; moreover, L and 4. are two 
binary relations on W;'.'= Ww{2}, whereas [] and * are two unary 
operations on W% The following conditions are required to hold: 

(i) L is symmetric. 
(ii) VisW, 3 j ~ W  s.t. i L j, where i ~_j means not i L j .  

(iii) V i s W : i  &i ,  w h e r e i & i  means n o t i  4.i .  
(iv) VIEWS': i 4. 2. 
(v) 4. is symmetric. 

(vi) Vi, j~W;': i f /  4. j, then i l j .  
(vii) Vi~W~,3 j~W ~ s.t. V k s W  ~ the following conditions are 

satisfied: 
(a) i & k i f f j  &k.  
(b) I f j  I k, then i 4. k. 
(viii) Vi ~ W~-: i L i iff [] i = 2. 

(ix) VieWS: if i L j, then [] i 4. j .  
(x) Vi, jeW;~: if [] i 4 . j  and i 4. � 9  then i l j .  

(xi) Vi, j6WX: i f /*  4. []j, then i* i j .  
(xii) Vi, j 6  W~': i* 4. j iff i 4. j. 
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It should be noted that the regularity condition for A, (i A- i and j A,j 
implies i _L j)  can be derived. Let us suppose that i A, i and j A,j. By 
condition (viii), [ ] i =  [ ] j = 2 .  By condition (iv), �9 & j  and i & Dj. 
Hence, by (x), i _l_j. 

Let o ~ = { W , A , , + , [ ] , * , 2 )  be a BZ 3 frame and let A _ c W  a. We 
can define the following two operations: 

AI={i~W'~IVj~A:i A,j}, A~={i~W'~IVj~A} 

Let 

P(o~) := {A ~_ W;'IA = A •177 

(the set of all L-regular subsets of ~'). In Giuntini (1991) we have proved 
that the structure ~ ( ~ ) =  (p(o~), _ ,  •  {2}, W ;') is a complete BZ 
lattice, where {2} and W ~ are the minimum and the maximum of the 
lattice, respectively. Given two A,-regular subsets A, B, the inf of A, B is 
A n B  and the sup (denoted by A u B) is (A u B )  •177 

Lemma 4.1. Let ~- = (W, 1,  &, [], *, 2 )  be a BZ 3 frame. Then, the 
following properties hold true VA, BeP(~)  and Vie Wa: 

(a) If i~A • then [] ieA- .  
(b) If LeA ~~, then i*sA. 

Proof (a) Let us suppose that LeA • and []iCA-. Then, 3jeA s.t. 
[]i & j. By hypothesis, i .1_ j and therefore, by condition (ix), []i  & j, 
contradiction. 

(b) Let us suppose that isA ~- ;  then, by condition (xii), i * e A - - .  
Let us suppose, by contradiction, that i*r Then, SjeA • s.t. i* .]_j. By 
the result previously proved, DjeA ~, so that � 89  & i*; hence, by condi- 
tion (xi), i* A_j, contradiction. �9 

Lemma 4.2. VA, BeP(o~): (A r i B ) -  = A ~ u B - .  

Proof The inclusion A ~ m B ~ __. (A n B) ~ is trivial. 
Let us suppose that ie(A r i B ) - .  Let us suppose, by contradiction, 

that iCA~uB~.  Then S j ~ ( A ~ u B ~ ) • 1 7 7 1 7 7  n B  ~~ s.t. 
i-LJ. By Lemma 4.1(b), j*eA riB. By hypothesis, i 4-j*,  so that, by 
conditions (xii) and (vi), we get i A-j, contradiction. �9 

Theorem 4.1. ~(o~) is a complete BZ 3 lattice. 

Proof As previously mentioned, ~(o~) is a complete BZ lattice and by 
Lemma 4.2, it satisfies the strong de Morgan law. Thus, to prove that 
N ( ~ )  is a BZ ~ lattice it suffices to show that ~ ( ~ )  satisfies condition (*) 
of Definition 2.6. Let us suppose that A • _ B and A _ B ~ ;  we want to 
show that A _~ B. Let us suppose that i~A but iCB. Then 3j~B • s.t. i _~j. 
By hypothesis, A • _~B, so that BIc_A-L~• • Then, j s A  • 
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since j ~ B  ~. Now, i~A and therefore, by Lemma 4.1(a), []LEA • Hence, 
[]i  & j. From j e B  • it follows, by Lemma 4.1(a), that E S j e B - .  But 
i ~ B - -  b e c a u s e A c B  ~ ~ ; h e n c e , i  & []j .  Thus, Di  ~ b j a n d i  & []j.  By 
condition (x), we get i L j, contradiction. [] 

Lemma 4.3. Let g = ( W , L ,  : 6 , [ ] , * , 2 )  be a BZ 3 frame. I f  W x 
contains an element u (the indeterminate world) s.t. u _l_u and 
Vi~Wr i L i iff i L u, then ~ ( Y )  has the half element 1/2,= {u} • 

Proof. First of  all note that {u} -L is an element of  r We now 
show that {u}=={u}  •177 Let us suppose that ie{u}  •177 Then, 
Vj~{u}~: i  L j .  By hypothesis, u L u, so that i L u, i.e., i t { u }  • . 

Let us suppose that i~{u}• then, i L u. Let us suppose that j e{u}  • 
We want to show that i 2_ j. Now, i J_ u and j L u, so that, by definition of 
the element u, i L i and j J_ j. By the regularity condition for L, we get 
i L j .  [] 

Theorem 4.1 shows that every BZ 3 frame determines a complete BZ 3 
lattice. The next theorem shows that every BZ 3 lattice is determined by 
some BZ 3 frame; consequently, every BZ 3 lattice is isomorphic to a BZ 3 
lattice of  sets. 

Theorem 4.2. Every BZ 3 lattice is embeddable into the BZ 3 lattice of 
all L-regular subsets of  some BZ 3 frame. 

Proof Let 5~ be a BZ ~ lattice. We can assume that Y has the half 
element 1/2; indeed, even if L does not contain 1/2, ~ can be embedded, 
via Theorem 3.2, into a BZ 3 lattice with the half element. 

Let us consider the system ~ = (W, L, &, [3, * ,  2 )  defined as fol- 
lows: 

(a) W is the set of  all proper filters of  5r 
(b) 2 is the trivial filter L. 
(c) VF, G6 W;: F_I_ G iff ~a6L: a e F  and a• 
(d) VF, G6W;~: F & G iff 3a~L:  a E F  and a~ ~G. 
(e) VF~ W;: D F  = {asLl3beF: b : ~  < a}. 

1 (f) VFsW;': F* = {a~L[3b~F" b*,=b rig <<_ a}. 

We want to show that o~ is a BZ 3 frame. An easy computat ion shows 
that the operations [] and * are well defined, i.e., V F s W :  [SF, F * e W .  
Moreover, VF~ W~: F __ D F  and F _~ F*. 

Conditions ( i ) - (v i )  are trivially verified. For the proof  of  condition 
(vii), see Giuntini (1991). 

(viii) Let us suppose that F L F. Then, 3a~L  s.t. a E F  and a=eF. 
Clearly, a •  and a• since F~_ [3F: Thus, 0 = a • n a •  
hence, Z;F = L = 2. Let us suppose that [~F = 2, i.e., 0e  Z]F. Then, 3b~F 
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s.t. b • = 0. By condition (*) of  Definition 2.6, it follows that b -< b • so 
that b• i.e., F i F. 

(ix) Let us suppose F,1, G. Then, ~aeL s.t. a~F and a• Since 
F _  DF, we have that as f~F  and therefore, a•  hence, D F  ~ G. 

(x) Let us suppose that N F  �9 G and F & [3G. Then, 3a, b~L s.t. 
a~[]F, a-~G,  b6F, and b~ sNG. By definition of Z]F, 3c6F s.t. c a~ <- a 
and 3dEG s.t. d •  Thus, a ~ - < c  ~ - -  so that c •  Now, 
b < b ~ ~  -< d •  so that d •  Hence, c n d a - ~ e F a n d  c •  N deG. 
By condition (*), c rq d • ~ < c •  u d • Thus, (c • - N d) • = c • L: d i e F .  
This means that F ,1, G. 

(xi) Let us suppose that F* & ~ G .  Then, 3a~L s.t. a~F* and 
a - ~ G .  Then, 3b, ceL  s.t. beF, b*<a,c~G,  and c• ~ Now, 
a - - < ( b * ) - ,  so that b * < c  i ~ -  Since (b*) i ~ = ( b N ~ ) •  • we 
have, by condition (*), that b*-< c • Thus, (b*)• But b*sF*, since 
F _~ F*; hence, F ,1, G. 

(xii) Let us suppose that F* & G. Then, 3a~L s.t. aEF* and a~6G. 
Then, 3b~L s.t. b~F and b*<a.  Thus, a~<-(b*)-:=(brl �89 
b ~ u g  = b - u 0 = b - .  Hence, b - s G ,  so that F + G. 

Let us suppose that F �9 G. Then, F* & G, since F __ F*. 
We can now define the map h:L ~--,2 w~ in the following way: 

ga~L: h(a) = {Fs W~ ]asF}. It  is not hard to see that h(a • = h(a) • i.e., 
h maps L into ~ ( g ) ,  the set of  all L-regular subsets of  the BZ 3 frame f t .  
By standard techniques, one can show that h is an embedding of 5 ~ into 
P ( g ) .  [] 

Definition 4.2. A Kripke model for BZL 3 is a system 
~" = (W, _1_, &, @, *, 2, fL P ),  where 

(i) @..=<W, _L, &, ~ ,  *, 2 )  is BZ 3 frame. 
(ii) ,Q is a subset of  P (Y)  which is closed under m ,  • ~ and 0.'= {2}. 

(iii) p is a valuation function which maps formulas into f~ according 
to the following conditions: 

(a) p ( p ) ~ ,  for all sentential letters p. 

(b) p(fl/x 7) = P(fi) rip(7). 
(c) p(-~/~) = p ( p ) l  
(d) p ( ~ f l )  = p(fl) ~. 

The other semantic definitions are given as in ortho-pair  semantics. 
K We will write T ~nZL~ c~ to denote that c~ is a logical consequence of T in the 

Kripke semantics for BZL 3. 
We can now prove that the Kripke semantics and the ortho-pair  

semantics strongly characterize the same logic. 
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Theorem 4.3. 

T ~K 0{ iff T ~o 

The proof of this theorem is a direct consequence of the following two 
lemmas: 

Lemma 4.4. Every Kripke model X = (W, _L, &, [2, *, 2, fl, p> can 
be transformed into an ortho-pair model J/{* = (L ~=, H, v> s.t. 

Lemma 4.5. Every ortho-pair model J{ = <L # ,  H, v> can be trans- 
formed into a Kripke model J l  ~u = (W, L, &, U, *, )~, fl, p> s.t. 

T ~ r a  iff T~av.~a 

Sketch of the Proof of Lemma 4.4. By Theorem 4.1, ~ is a BZ 3 
sublattice of the complete BZ 3 lattice ~(o~) of all L-regular subsets of the 
BZ 3 frame ~" ..= < W, L, &, El, *,  2 >. Thus, the Kripke model ~ can be 
transformed into a Kripke model ~g'~" by replacing ~ with P(ff) .  Clearly, 
T ~.,c ~ iff T ~ c a .  By Theorem 3.2, 3a(o ~ )  can be embedded into the 
complete BZ 3 lattice Y( I )  of all possible propositions (ortho-pairs) of a 
preclusivity space (/ ,  # >. Let k: p(o~) --+ T(I) be such an embedding. Take 
H as the range of k. Define v(7) = k(v(7)), for any formula 7- One can easily 
show that the system Jgw = <L # ,  H, v> is a "good" ortho-pair model s.t. 
T ~ . , . , ~ i f f T ~ . , ~ .  �9 

Sketch of the Proof of Lemma 4.5. By Theorem 3.1, H is a BZ 3 
sublattice of the complete BZ 3 lattice J-(I)  of all possible propositions of 
(I, @ ). Let us consider the ortho-pair model j / e  which is obtained from 
J / b y  replacing H with T(I). Clearly, T ~ ~ iff T c a ,  ~. 

Let us define the system ag ~r = (W, 3_, d~, F1, *, 2, f~, p )  in the fol- 
lowing way: 

(i) W is the T( I ) \{{~ ,  W)}. 
(ii) V(A~, Ao), (B,, Bo)~W: 
(a) (AI, Ao) 3_ (BI, Bo> iff (A,,  Ao)E_(B,, Bo) j'. 
(b) (A, ,Ao)  & (B1,Bo) iff (A, ,Ao)E(B~,Bo)~.  

(iii) E](A~, Ao) = (A1, A0) • 
(iv) <A,, Ao>* = <~ ,  A0>. 
(v) ~ = < ~ ,  w>. 

One can prove that ~ .'= (W, 3_, &, [3, *, ~ ) is a BZ 3 frame. Take 
as the set P ( ~ )  of all L-regular subsets of aj .  Define P(7) = (v(7)], for any 
formula 7, where (v(?)] is the principal ideal determined by v(7). One can 
easily check that j f~e is a Kripke model s.t. T ~ ,  ~ iff T b * *  a. �9 
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Some problems concerning Brouwer-Zadeh logics remain open. In 
particular: 

1. Is the BZ poset of all effects of an infinite-dimensional Hilbert space 
a de Morgan BZ poset? 

2. Is every de Morgan BZ poset (lattice) embeddable into a complete 
de Morgan BZ lattice? If not, is the de Morgan BZ poset of all effects of 
a finite-dimensional Hilbert space embeddable into a complete de Morgan 
BZ poset? 

3. Is there any Kripke characterization of the de Morgan BZ logic, 
i.e., a logic algebraically characterized by the class of all de Morgan BZ 
lattices? In this framework, the problem can be reformulated in this way: is 
the (strong) de Morgan law elementary? 

4. Is it possible to axiomatize a logic based on an infinite many-valued 
generalization of the ortho-pair semantics? 
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